Species in the wetland plant genus Sphagnum engineer ecosystems by altering nutrient and water cycling and storage. Sphagnum plants hold water both internally and externally, with up to 80% held within capillary spaces among leaves and branches. Water retention and movement depend on hydraulic properties, which can be modeled within capillary spaces. These properties can help explain the water holding capacity in Sphagnum and how these differ across species. To better understand external water holding among Sphagnum species, we used micro CT scanning to characterize the structure of pore water spaces within leaves and branches. Three species of Sphagnum were collected in the field, S. subsecundum, S. palustre, and S. pulchrum. These differ greatly in terms of morphological characteristics and represent distinct ecological groups in Sphagnum. Three mature branches from each type of Sphagnum were stained in Pb(NO3)2, imaged using a micro CT scanner and reconstructed to generate virtual 3D models for comparison. Scans were unable to fully resolve cellular detail, but could be used to reconstruct leaf morphology. We used a shrink wrap technique to simulate the external water holding spaces within branches at different radii of curvature, which correspond to water held at particular water potentials (-0.21 to -1.07 MPa). At -0.21 MPa, the ratios of water volume to leaf volume were calculated and were compared using ANOVA. For S. subsecundum, the mean ratio was 1.44 (n=3) and this was significantly lower (p=0.02) than S. pulchrum (2.22). Understanding the mechanism that leads to differences in water holding capacity is helpful to understand the functional role of Sphagnum in ecosystems.
Additional Speakers
Faculty Sponsors
Time Slot
Room
Topic
Moderator